

Résidus de peroxyde d'hydrogène après stérilisation basse température :

Quels risques en pratique pour les utilisateurs et patients ?

Nina RANJIT
Présentation par Marc LAURENT
Mercredi 15 septembre 2021

Contexte

- H₂O₂: utilisation très répandue
 - Pour la stérilisation basse température (SBT) : utilisation de + en + fréquente
 - Non toxique *a priori* : $2 H_2O_2 \rightarrow 2 H_2O + O_2$

Aigüe	Chronique
 Irritations peau et muqueuse oculaire à forte concentration Irritation nez, gorge, voies respiratoires dès 3,3 ppm (5 mg/m³) 	décoloration cheveux si exposition répétée

Exposition professionnelle : quelques définitions

- VLCT-15min (ou VLE) : Valeur limite de courte durée. Reflète la concentration maximale admissible à laquelle un travailleur peut être exposé pour une durée ≤ 15 min.
- VLEP-8h (ou VME): Valeur limite d'exposition professionnelle sur 8h, peut être dépassée sur une courte durée sous réserve de ne pas dépasser la VLCT <u>lorsque celle-ci existe</u>

Pays	VLEP-8h (ppm)	VLCT (ppm)
France	1	Non établie
USA	1	Non établie
Allemagne Suisse	0,5	0,5
Royaume-Uni	1	2

En absence de VLCT:

→ Ne pas dépasser la valeur de 5 fois la VLEP-8h pendant 15 min au maximum 6 fois sur une journée de travail

Non CMR = pas de contrôle obligatoire

Exposition professionnelle pour la SBT

Quelles données en pratique ?

- Peu d'études indépendantes disponibles, méthodologie peu détaillée
- Concernent surtout les modèles de STERRAD™ => Quid des V-Pro™?
- Principalement données pour les agents

Rationnel de cette étude

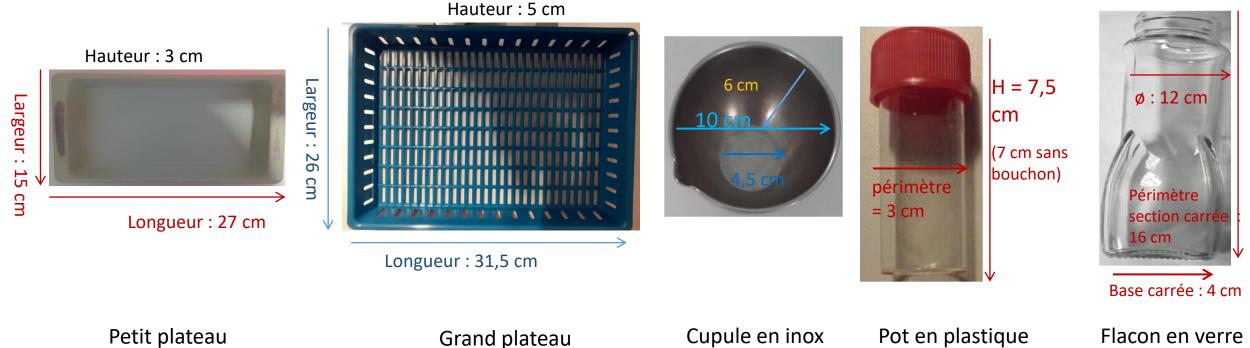
Allons plus loin:

Apporter des données supplémentaires sur l'exposition

- Pour les utilisateurs
- Pour les patients

1^{er} résultats concernant l'exposition des agents présentés en 2017 et 2018

Matériel et méthodes



Stérilisateurs V-Pro 1+ et V-Pro Max (STERIS[©])

Détecteur portable Dräger[©] X-am 5100 étalonné et calibré pour la mesure H₂O₂

DM et emballages testés

- Conformation, taille, matériaux
- Mesures réalisées sur cycles avec et sans lumière
- Emballages: TYVEK®, SMS et ULTRA®

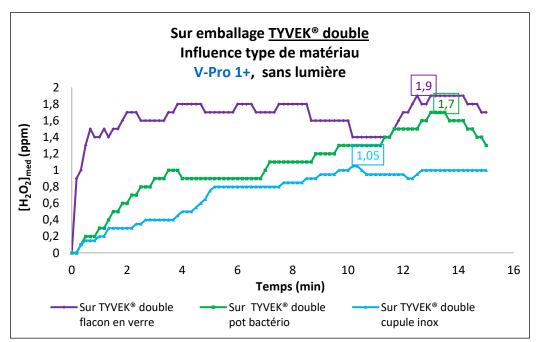
Evaluation de l'exposition aux résidus d'H₂O₂

Exposition des utilisateurs

- Surface externe des emballages
- Entre les 2 emballages

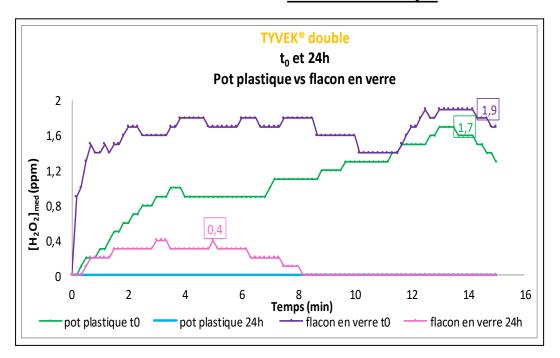
Exposition des patients

- Intérieur de l'emballage
- Surface et intérieur des DM creux



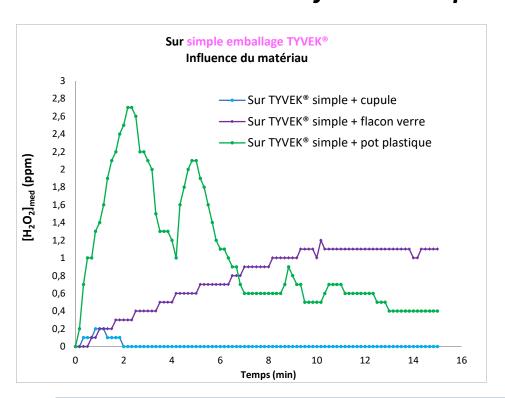
Cinétiques

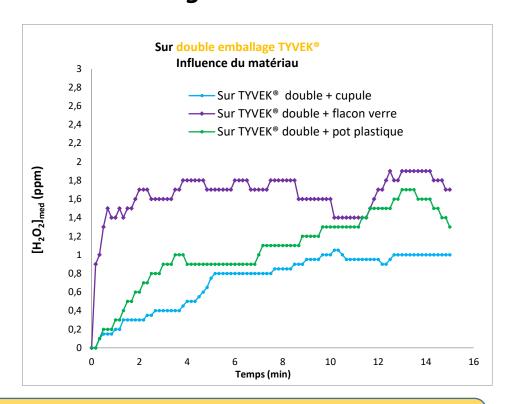
Exposition des utilisateurs (1)


Surface des emballages

Influence du DM type de <u>matériau</u> et de <u>géométrie</u>

- Pots ≈ flacons
- Verre et inox : matériaux neutres, mais résultats ≠
 → Influence géométrie du DM > matériau

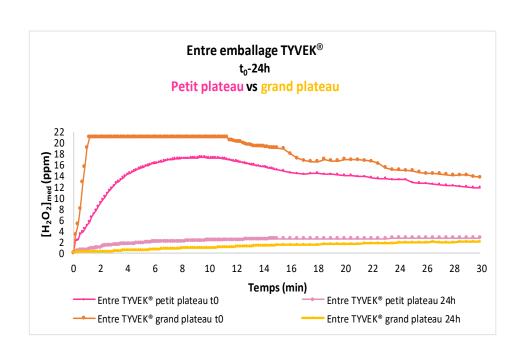

DM creux : influence du matériau du DM et élimination au cours du temps

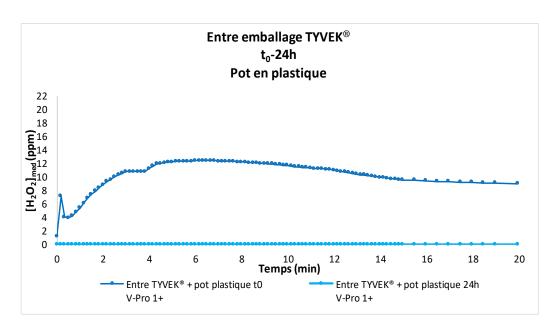


- A t0, [H₂O₂]> 1 ppm plus de 7 min
 - Relargage progressif
- + progressif pour pots en plastique→ Adsorption sur les DM ?

Exposition des utilisateurs (2)

Surface des emballages Influence simple ou double emballage

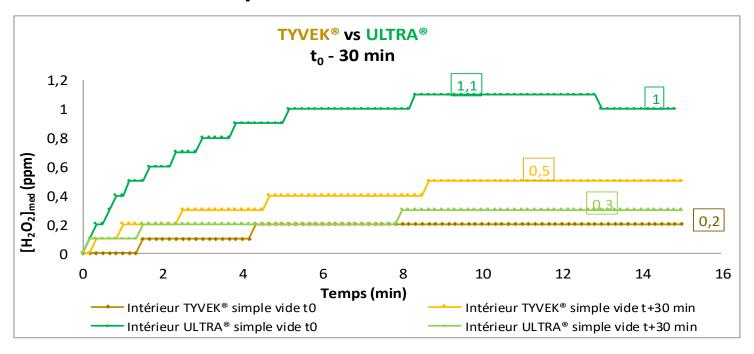



- Simple emballage : rôle de la géométrie du DM s'ajoutant à celui du matériau
 - Double emballage : relargage progressif $\rightarrow H_2O_2$ entre les emballages ?

Exposition des utilisateurs (3)

Entre les emballages

Influence de la taille et de la géométrie du DM et évolution au cours du temps

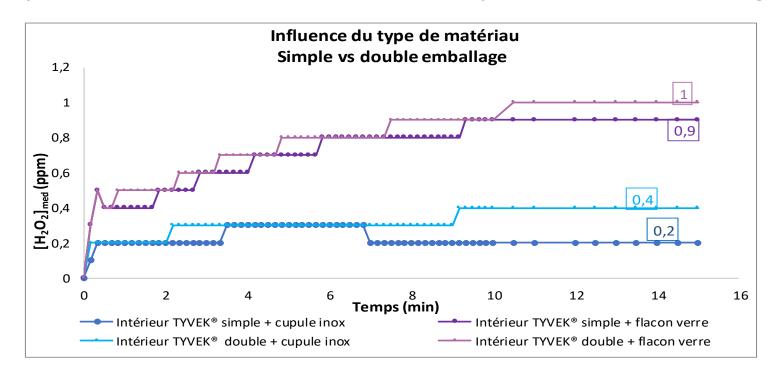


- A t0, valeurs >>> 2 ppm sur plus de 15 min.
- A 24h, toujours > 2 ppm pour les plateaux mais 0 ppm pour les pots en plastique
 → Influence de surface d'emballage > matériau du DM
 → Influence géométrie du DM (adsorption)

Exposition des patients (1)

Intérieur de l'emballage vide (témoin)

Comparaison TYVEK® et ULTRA®

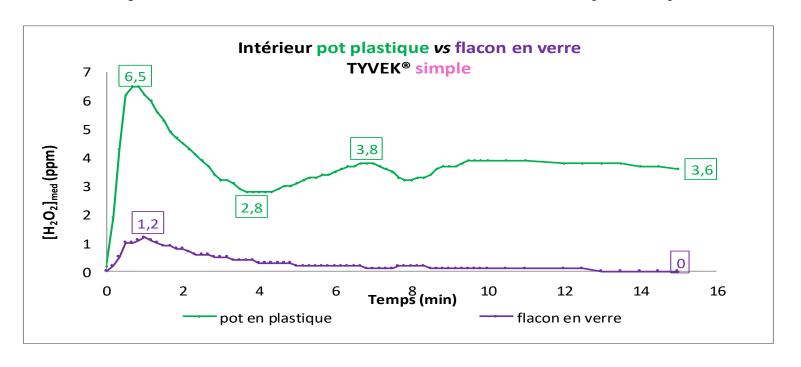


- Quasi absence d'H₂O₂ à l'intérieur des sachets vides
 - Ultra > TYVEK®: à t0
 - Moins de H₂O₂ sur le DM avec du Tyvek[®]

Exposition des patients (2)

Intérieur de l'emballage primaire vidé

Influence du <u>matériau</u> du DM et du <u>simple ou double</u> emballage

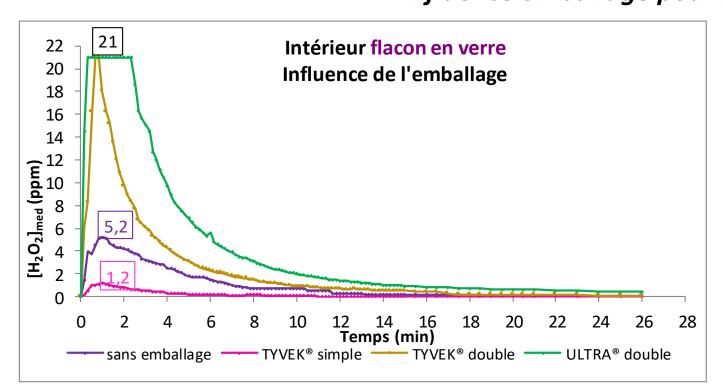


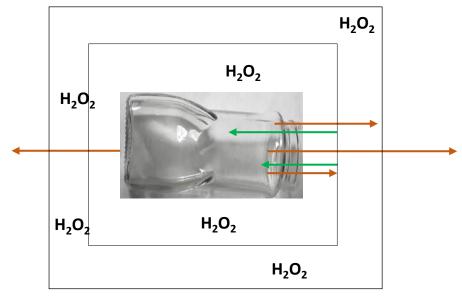
- Si même DM : simple emballage ≈ double emballage.
 - $[H_2O_2]_{flacons} > [H_2O_2]_{cupules}$ (matériaux inertes)
 - → Rôle de la géométrie du DM > type de matériau

Exposition des patients (3)

Intérieur des DM creux

Influence du matériau du DM : verre Vs plastique





- $[H_2O_2]_{plastique} > [H_2O_2]_{verre}$
- Relargage plastique + progressif
- Adsorption et absorption à l'intérieur des pots en plastique
 - Piégeage simple pour les flacons en verre

Exposition des patients (4)

Intérieur des DM creux Influence emballage pour le verre

- Sans emballage ou simple emballage : élimination H₂O₂rapide et totale
- Double emballage : piégeage entre sachets + transfert d'H₂O₂ entre compartiments ?

Exposition des patients (5)

Intérieur de tubes creux (Test Hélix)

Influence du diamètre de la lumière et de la longueur des tubes

	Volume diluent (Eau ultra pure)	Dosage après 2h d'extraction	Dosage après 20h d'extraction
Blanc – tube	50 mL	< 0,5 mg/L	0 mg/L
Elastomère PCD 1000 mm	70 mL	0 mg/L	0 mg/L
Elastomère PCD 700 mm	40 mL	< 0,5 mg/L	0 mg/L
Elastomère PCD 500 mm	20 mL	< 0,5 mg/L	0 mg/L

- Absence $d'H_2O_2$:
- Mauvaise pénétration dans les DM ? → NON
- Bonne élimination de l'agent stérilisant → OUI!

Discussion: exposition des utilisateurs

En pratique:

- Peu d'informations, absence de normes pour limites de résidus admissibles
- Stockage des DM en arsenaux de plusieurs heures à plusieurs jours
- Manipulation et ouverture des emballages en salle d'opération (port de gants) et élimination à la suite.

Nos résultats :

- Entre les emballages : valeurs importantes, négativation à 24h non systématique (influence surface emballage et matériau du DM)
- Influence du couple emballage/type de matériau et de la géométrie du DM

Etudier systématiquement interactions
DM / type d'emballage
(relation contenant/contenu)

Favoriser l'utilisation du Tyvek®?

Discussion: exposition des patients

- En pratique :

- Etude de 2012^1 : présence d'H₂O₂ à la surface de fibroscopes (STERRAD®) > 10 ppm.
- Données de compatibilité disponibles (STERIS®)² : valeurs <1 ppm.

- Nos résultats :

- Adsorption à l'intérieur des pots en plastiques ↔ qualité des prélèvements chir recueillis ?
 - Usure des matériaux et impact sur la rétention d'H₂O₂?

Evaluer plus précisément l'adsorption H₂O₂ sur les DM et leur intégrité au cours du temps

Mesures sur les DM stockés dans les arsenaux à 24h, 48h et plus

Favoriser le simple emballage?

Limites et forces de cette étude

Limites		Forces	
•	Mesure sur des DM test Difficulté de réaliser des mesures à 24h, 48h et plus Toutes les combinaisons envisagées n'ont pas pu être testées Pas de mesures sur des DM restant en contact prolongé avec le patient	 Données sur la persistance de l'H₂O₂ à la surface et entre les emballages Démonstration de l'importance de la géométrie du DM Confirmation de données déjà connue Nouvelles données pour l'ULTRA® 	

Optique robot Da Vinci®

Pour conclure

Utilisateurs

- Stockage DM en arsenaux ventilés (ISO8), sur minimum quelques heures
- Manipulation emballages rapide, élimination immédiate
 - Port de gants et de masque

Faible risque d'exposition lié au peroxyde d'hydrogène dans le cadre de la SBT.

Stérilisation

- Ne pas décharger tout de suite
- Porter des gants
- Favoriser SE
- Favoriser Tyvek®
- Tester les matériaux à long terme

Patients

- Risque à rapporter à la durée de l'intervention + rapport Bénéfice/risque
 A priori, risque faible : désorption des DM avant utilisation, exposition ponctuelle
 - → A évaluer plus précisément

Merci pour votre attention

